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PID CONTROL 
 

• The basic configuration of the SISO control system is shown in the block 
diagram below (Fig. 1.). The block diagram gives the notation used for the 
signals in the control system.  
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Fig. 1. Basic control system configuration. 
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• The block marked »Process« in Figure 1. includes all the elements of the 
control system which are considered as the parts of the process: actuator, plant, 
and sensor.  

• The mathematical model of the process can be very complex, with complicated 
static and dynamic description.  

• The identification of a complex model requires a lot of engineering effort.  

• Since the performance obtained from control system with the PID controller is 
limited, many PID controller tuning methods use simple models which have 
similar complexity as the PID controller.  

• These models require simple identification experiments and capture dominant 
dynamic properties. Usual representation of these models is low-order (first or 
second order) transfer function in Laplace domain.  
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• On the other hand, some tuning methods for PID controllers were developed 
for more complex process models (e.g. higher order models, models with non-
linear characteristics) because of successful and widespread use of PID 
controllers in industry.  

• A transfer function modeling the process is generally represented as follows: 
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where is: 

o Tt - dead time,  

o m, n - degrees of complex variable polynomials, and  

o k - number of integrators present in the process.  

• The type of the process model is determined by the exponent k, so that a 
process without an integrator (k=0) is called »type 0 process«, a process with 
an integrator (k=1) is called »type 1 process«, and so on. 
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• Two more common process models are used. The first model is the First Order 
with Dead Time (FODT) model, often used for the description of chemical 
processes, given by the transfer function: 
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• The second model is frequently employed to describe electromechanical 
processes. It consists of an integration and a first order lag: 
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( )
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+2

2

21  . (3) 

• A PID controller consists of the three terms: proportional (P), integral (I), and 
derivative (D). Its behavior can be roughly interpreted as the sum of the three 
term actions:  

o the P term gives a rapid control response and a possible steady state error;  

o the I term eliminates the steady state error; and  

o the D term improves the behavior of the control system during transients. 
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• A PID-type controller can be implemented variously. The following 
subsections describe how controllers apply the PID control law through the 
review of different PID controller forms and implementation aspects.  

• The section proceeds with an outline of  

o different tuning rules and  

o explains the usage of PI controllers in dead-time compensating controllers. 



 

 

6 

6 

1. Forms of the PID controller 
• Different forms of PID controller reflect the development of the PID algorithm 

in different technologies and its use in diverse control systems.  

• Besides, some PID forms ensure better performance and behavior of the 
control system than others.  

• The textbook version of the PID control law in the time domain is: 

 u t K e t K e d K de t
dt

K e t
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e d T de t
dtP I
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t

D( ) ( ) ( ) ( ) ( ( ) ( ) ( ) )= + z + = + z +τ τ τ τ
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where is:  
o KP - proportional gain,  
o KI - gain of the integral term,  
o KD - gain of the derivative term,  
o TI - integral time constant, and  
o TD - derivative time constant. 
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• The Laplace transformation of equation (4) gives the transfer function of the 
PID controller: 
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• Since the numerator of the PID controller transfer function in (5) has a higher 
degree than the denominator, the transfer function is not causal and as such can 
not be realized.  

• The form (5) of the PID controller is modified through the addition of a lag to 
the derivative term:  
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where is: 

o TD/N - time constant of the added lag.  
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• Divisor N in (6) determines the gain KHF of the PID controller in the high 
frequency range: 

 K G j K NHF R P= = +
→∞ω

ωlim ( ) ( )1 . (7) 

• The gain KHF must be limited because measurement noise signal n(t) often 
contains high frequency components and its amplification should be limited. 
Usually, the divisor N is chosen in the range 3 ÷ 10.  
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                                 a) Parallel form;                           b) Series form; 

 Fig. 2. Forms of the PID controller. 
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• The form of the PID controller defined by (5) is called the parallel or non-
interactive form (Figure 2.). 

• Another form of the PID controller is the series or interacting form (Fig. 2.b.) 
with transfer function: 

 
1( ) (1 )(1 )RS PS DS
IS

G s K T s
T s

= + + , (8) 

• The form (8) of the PID controller has a simple representation in the frequency 
domain, since all roots and zeros of GRS(s) are real and correspond to the 
inverses of the break frequencies.  

• Based on equations (5) and (8), the relations for converting the parameters 
between the parallel and the series form of the PID controller are: 

 K K T TPS
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• Equations (9) – (11) can be used only if  TI ≥ 4TD., i.e. when poles and zeros of 
the parallel form are real. 

• As output of the above forms of the PID controller is the total value of the 
control signal u(t), they are called positional (continuous version) or absolute 
(discrete versions) PID algorithms.  

• Some actuators such as a motor may use the increment or derivative of the 
control signal as an input signal, because they have built-in integral action. PID 
controllers with such an output are termed velocity (continuous version) or 
incremental (discrete version) PID controllers.  

• Standard PID controllers act on the error signal e(t) and give the control signal 
u(t) as the output. Such configuration of the controller uses the same 
parameters as in responding to set-point change (tracking) and to load 
disturbance (regulating). The two functions of the control system often impose 
contradictory demands on the value of the controller parameters. The 
contradiction is resolved by a trade-off in the controller's design.  
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• In order to avoid this trade-off a modification of the PID controller structure 
was devised (Figure 3.).  
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 Fig. 3. Two-degrees of freedom PID controller 

• Signal channels for reference signal and for measurement signal are separated, 
and a set of weights (FP, FI, FD) in the channel of the reference signal is 
introduced. 
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• The PID controller with set-point weighting is tuned in two steps: 

o Controller parameters (KP, TI, TD) are tuned for good regulation; 

o Weights F are adjusted in order to set zeros of the closed-loop transfer 
function and thus to improve the tracking behavior of the control system. 

• Controllers that allow such separation of the design for regulating and for 
tracking are called two-degree-of-freedom controllers. 

• The introduction of arbitrary weights in the reference channel of the PID 
controller gives design more freedom.  

• In some PID controller implementations weights are set to FD = 0 and FP = 0 in 
order to avoid derivative and proportional bumps, which are present in 
response to step set-point change. Furthermore, the weight of integral term is 
set to FI = 1. 
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• The standard form of the PID controller, similar to the structure depicted in 
Figure 3, and recommended by Instrument Society of America, is given below 
(K. J. Åstrom and T. Hägglund; PID Controllers: Theory, Design and Tuning; 
Instrument Society of America, North Carolina, 1995): 

 U s K F R s Y s
sT

R s Y s sT
sT N

F R s Y sR P
I

D

D
D( ) [( ( ) ( )) ( ( ) ( ))

/
( ( ) ( ))]= − + − +

+
−

1
1 . (12) 

• Frequently, only a part of a PID controller is used. Åstrom and Hägglund 
(1995) have noted that most control loops are of the PI type.  

• As a rule, the PI controller is used for processes of the first order, or for 
processes not requiring tight control.  

• A PD controller can be used for processes which contain integrators, and 
which do not have constant load disturbances, since PD controller can not 
compensate for it.  

• The application of a P controller is limited to simple control tasks. 
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• Today, almost all control strategies are implemented as digital algorithms in 
various devices such as Programmable Logic Controllers (PLCs), Digital 
Signal Processors (DSPs), and in other microprocessor-based equipment.  

• To become applicable in such equipment, the PID control algorithm has to be 
discretized. Using Euler integration method – rectangular integration, the 
discrete version of the positional algorithm (4) is calculated as: 

 u k K e k T
T

e i T
T

e k e kP
I i

k
D( ) ( ) ( ) ( ( ) ( ))= + ∑ + − −

L
NM

O
QP=

−

0

1
1 , (13) 

where is: 

o k - discrete time instant, and  

o T - sampling time.  
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• Recursive equation describing the incremental version of the PID algorithm is 
obtained when the equation (13) for the time instant k-1 is subtracted from the 
same equation for the time instant k: 

 Δu k u k u k q e k q e k q e k( ) ( ) ( ) ( ) ( ) ( )= − − = + − + −1 1 20 1 2 , (14) 

where is: 

  q0 = KP (1 + TD/T),  

 q1 = KP (1 + 2 TD/T – T/TI ) and  

 q2 = KP TD / T.  

• Other relations for parameters qi in (14) are obtained if a different integration 
method (e.g. trapezoidal method) is used.  

• These discrete approximations of the continuous PID controller are valid only 
if the sampling time T is sufficiently short in comparison to the time constants 
of the controller.  
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• Otherwise, when sampling time T is not much shorter than the time constants 
of the controller, connection with continuous PID controllers is dropped and Z-
transform form of the PID controller is used (Isermann, 1989).  

• Discrete controller of the second order with an integrator has a transfer 
function in the Z-domain: 

 G z q q z q z
zC ( ) =

+ +
−

− −

−
0 1

1
2

2

11 . (15) 

• Polynomial coefficients qi in (15) have to satisfy the following relations 
(Isermann, 1989): 

 q0  > 0,    

 q1 < - q0, 

 - (q0 + q1) < q2 < q0, 

so that the obtained digital controller has a dynamic behavior of the continuos 
PID controller. 
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2. Practical issues in the application of PID control 
• All controllers are designed to work with processes which have some physical 

constraint: valves have a limited operating range (0%-100%), pumps have 
limited power, motors have a maximum moment, and so on.  

• These limitations can be regarded as non-linearities in the process and have to 
be considered in the application of the controller.  

• Since many of these limitations appear at the input of the actuator (process), 
they are referred to as input limitations and are modeled with a non-linear 
element having a saturation characteristic, as shown in Figure 4.  
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 Fig. 4. Input limitation as a part of the control system. 
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• Beside input magnitude limitations, actuators often have defined rate 
limitations, or maximum rates at which the control signal u(t) can be changed. 

• When the controller output signal u0(t) exceeds the upper limit umax, or when it 
falls below the lower limit umin of the operating range, its value changes in the 
input limitation element so that the controller output signal u0(t) and the 
process input u(t) do not coincide.  

• Shouldn’t the two coincide, the integrator in a controller with integral action 
would produce an inaccurate and highly excessive value which would cause 
oscillation and slowing down of the transient response. In other words, the 
effect would be a large overshoot and a long settling time. 

• This behavior is called the integrator windup.  

• Moreover, the feedback loop during the windup behaves as if it were broken.  

• There are several anti-windup algorithms to avoid adverse effects of the 
integrator windup on the control system performance. 
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• Figure 5 shows the structure of the linear feedback anti-windup algorithm.  
• A new signal eaw(t) is added as an additional input to the integrator of the 

controller. It is active when there is difference between the controller output 
u0(t) and the process input u(t).  

• It acts in direction opposite to the windup effect. The rate of anti-windup 
action is defined with the constant TAW which can be explained as a time 
constant of this action. Åstrom and Hägglund (1995) calculated its value as 
follows: T T TAW I D= . 
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 Fig. 5. Structure of the linear feedback anti-windup algorithm. 
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• Another anti-windup algorithm, suitable for discrete implementation, is the 
conditional integration algorithm. It allows integration of the error signal e(t) 
in the integrator element provided that some conditions imposed on the signals 
present in the control system are met. Otherwise, the integration is not 
permitted.  

• Similar deterioration of the control system performance happens when the 
source of the control signal u(t) is changed, for example, when the controller is 
substituted with another, or when it is switched from manual to automatic 
mode.  

• The switch between two different modes of control system operation is called 
plant-input substitution.  
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• A bump in the control signal u(t) reflects such plant-input substition unless the 
switching controllers are properly prepared.  

• The effect can be avoided by using bumpless transfer techniques. These 
techniques calculate the states of the substitution controller before the switch 
happens, so that bump in the control signal does not occur. 

• An important issue in the implementation of discrete control algorithms is the 
choice of sampling time.  

• That choice depends on the control-loop dynamics and should follow the 
recommendation given in the Shannon’s theorem.  

• Since there are many signals and elements in the control loop with different 
dynamic properties, it is not always clear how to choose the sampling time.  
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• For the discrete PID controller, Isermann (R. Isermann: Digital Control 
Systems, Springer-Verlag, Berlin, 1989) relates the sampling time T to the 
settling time T95% of the process (time required for the response to reach 95% 
of its final value):  

 
T
T
95% 5 15≈ ÷ . (16) 

• Some rules of thumb have been established for relating sampling time T to the 
parameters of PI and PID controllers (K. J. Åstrom i B. Wittenmart: Computer 
Controlled Systems – Theory and Design, Prentice-Hall, New Jersey, 1990): 

o PI controller: 

 
T
TI

≈ ÷01 0 3. . ; (17) 

o PID controller: 

 
TN
TD

≈ ÷0 2 0 6. . , (18) 

where N is divisor constant from equation (6).  
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• Previous relations should serve as guidelines and, if necessary, should be 
adjusted for the particular use. 

• Additionally, the discrete implementation of the PID controller raises several 
other issues which have to be addressed: 

o Effects of finite word length; 

o Signal quantization effects; 

o Signal conditioning and prefiltering problems. 

• Solutions and trade-offs concerning these issues have been addressed in many 
textbooks (e.g. Åstrom and Wittenmark, 1990; Isermann, 1989) and in 
specialized literature (e.g. Åstrom and Steingrimsson, 1991). 
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3. Tuning methods for PID controllers 

 
• Controller tuning methods provide the controller parameters in the form of 

formulae or algorithms.  

• They ensure that the obtained control system would be stable and would meet 
given objectives.  

• These methods require certain knowledge about the controlled process. This 
knowledge, which depends on the applied method, usually translates into a 
transfer function.  

• The objectives which should be achieved by the application of the control 
system are associated with the following control system features: 

o Regulating performance; 
o Tracking performance;  
o Robustness; 
o Noise attenuation. 
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• Often, the desired objectives put contradictory demands on the values of the 
controller parameters, so that various trade-offs have to be made. The 
objectives can be stated in many ways such as through: 

o Specifications within the time domain; 
o Specifications within the frequency domain; 
o Robustness specifications; 
o Other specifications. 

• The specifications within the time domain give some values related to the 
shape of control system signals in the time domain.  

• Figure 6. shows a typical output signal y(t), a response to set-point change.  

• Specification values within the time domain are marked on it: overshoot σm, 
undershoot σu, rise time tr, time of first maximum tm, settling time tε, and 
steady state error ess.  
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 Fig. 6. Specifications in time domain. 

• Similar specifications within the time domain are used to describe 
characteristics of the control system response to load disturbance: peak 
perturbation σdm and disturbance settling time tdε. 
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• The specifications within the frequency domain define some values related to 
the frequency characteristics of transfer functions of various elements in the 
control system.  

• Bandwidth of a closed-loop control system with transfer function G(s) is the 
lowest frequency ωb for which below relation holds: 

 
G j

G
b( )

( )
ω
0

1
2

=  (19) 

• The gain margin Ar of the control system, described with the open-loop 
transfer function GO(s), is defined as the inverse of the open-loop gain at the 
phase crossover frequency ωπ:  

 A
G jr

O

=
1

( )ωπ
, (20) 

where the frequency ωπ is defined as the lowest frequency with 

 arg ( )G jO ω ππ = − . (21) 
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• The phase crossover frequency ωπ is also called the ultimate frequency of the 
control system.  

• The phase margin γ of the control system is defined as the phase of the open-
loop transfer function GO(s) at the gain crossover frequency ωc: 

 γ ω π= +arg ( )G jO c ,  (22) 

where the frequency ωc is defined as the lowest frequency with  

 G jO c( )ω = 1. (23) 

• Maximum sensitivity Ms of the control system, also called modulus margin, is 
defined as: 

 M
G js

O

=
+

max
( )ω ω

1
1 , (24) 

• MS can be interpreted as the inverse of the shortest distance between the 
critical point C (-1, i0) in the Nyquist plane and the Nyquist curve (Figure 7.).  
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• The definition (24) for the maximum sensitivity Ms makes it possible to relate 
Ms to gain and phase margin of the control system: 

 A M
Mr

s

s

≥
−1 , (25) 

 γ ≥
F
HG
I
KJ2 1

2
arcsin

Ms
. (26) 

• Robustness specifications define allowed deviation of the process parameters 
from nominal values.  

• The control system should retain designed stability and performance in the 
range of these deviations.  

• The parameter deviations from nominal values can be defined as multiplicative 
or additive parameter uncertainty characteristics, expressed in the frequency 
domain.  
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• Besides, the robustness of the control system can be specified in terms of gain 
margin Ar, phase margin γ, and as maximum allowed sensitivity Ms of the 
control system. 
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 Fig. 7. Specifications in frequency domain. 
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• Some controller tuning methods include recommendations of a suitable 
controller structure and its parameters. Tuning methods for the fixed structure 
of PID controllers are presented here.  

• P, PI, and PD controllers are considered as special cases of PID controller.  

• The tuning methods for PID controllers can be grouped according to their 
nature and usage, as follows: 

o Heuristic methods evolved from practical experience in PID controller 
tuning; 

o Frequency methods employ frequency characteristics of the controlled 
process to tune PID controller parameters; 

o Analytical methods calculate PID controller parameters from analytical or 
algebraic relations that define control system by direct calculation; 

o Loop-shaping methods seek to shape the open-loop transfer function of 
the control system into a desirable form; 
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o Optimization methods obtain PID controller parameters from different 
optimization algorithms; 

o Methods in which PID controller represents a restriction of possible 
controller structure (e.g. PID controller tuning in the framework of 
Internal Model Control);  

o Methods for tuning a PID controller which functions as a part of an 
advanced control strategy (e.g. usage of PI controller in dead-time 
compensating controllers). 

• The above groups do not sharply distinguish and some methods may belong to 
more than one group.  

• An important criterion in the evaluation of the presented tuning methods is the 
suitability of a particular method for the on-line usage.  

• This especially refers to the possibility to use a particular method for 
autotuning. 
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3.1. Ziegler-Nichols tuning rules 

• Ziegler and Nichols have introduced a useful methodology for controller 
tuning.  

• It consists of a simple experiment with a controlled process and extracts some 
of its features.  

• Once the experiment is completed, the method provides tables by which it is 
possible to calculate the controller parameters.  

• The tuning tables were developed through numerous experiments which 
involved different processes.  

• The goal of the design was to find a controller which gives the quarter 
amplitude damping (QAD) ratio of the control systems in response to load 
disturbance.  

• This design specification arises from empirical observations and has been used 
traditionally, but gives too oscillatory control systems. Ziegler and Nichols 
considered P, PI, and PID controllers in their work. 
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• The first experiment consists of measuring apparent dead-time TZN1 and the 
maximum slope of the response on the process reaction curve (response to step 
set-point change) KZN1. 

• The measurements are shown in Figure 8.a, and relations for obtaining 
controller parameters in Table 1.a.  
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 Fig. 8. Ziegler-Nichols experiments: output signal of the control system. 
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• In the second experiment, the process is controlled with a proportional 
controller.  

• The gain of the controller is gradually increased until the control system 
reaches stable oscillations on the stability limit.  

• The value of the controller gain KU is called the ultimate gain, and the 
oscillation period TU is called the ultimate period.  

• The two values serve as the basis for the calculation of the controller 
parameters (see Table 1.b). Figure 8.b shows a typical process output y(t) 
during such an experiment. 

Controller KP TI TD Controller KP TI TD 

P 1/(TZN1 KZN1) - - P 0.5 KU - - 

PI 0.9/(TZN1 KZN1) 3 TZN1 - PI 0.45 KU 0.85 TU - 

PID 1.2/(TZN1 KZN1) 2 TZN1 TZN1/2 PID 0.6 KU 0.5 TU 0.125 TU 

a) Experiment with process reaction curve 
(ZN1); 

b) Experiment with process on the stability limit 
(ZN2); 

 Tab. 1. Ziegler-Nichols relations for calculating controller parameters. 
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• Takahashi has developed similar relations (Table 2.) to calculate the discrete P, 
PI, and PID controller parameters.  

• These relations are the form of the PID controller, as follows: 

 u k u k K y k y k T
T

e k T
T

y k y k y kP
I

D( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − + − − + + − − − −
L
NM

O
QP

1 1 2 1 2 . (27) 

• An additional parameter to the original relations in Table 2 is the sampling 
time T. In relation to other time constants, the sampling time T has to be small 
enough for the relations to produce useful results. 

• Many authors assessed the performance of the control systems with controllers 
tuned according to Ziegler-Nichols (ZN) rules  

• The comparison of the two ZN methods shows that the second can be regarded 
as better, since the first method fails to make it clear how to measure apparent 
dead time TZN1.  
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• Moreover, for many processes the controller gain obtained with the first 
method is 25% – 40% higher than the gain obtained with the second method, 
giving more oscillatory response to set-point change. 

Controller KP T/TI TD/T 
P 1

1 1K T TZN ZN( )+
 - - 

PI 0 9 0135
21 1 1 1

2
.

( )
.

( / )K T T
T

K T TZN ZN ZN ZN+
−

+
 0 27

21 1
2

.
( / )

T
K K T TP ZN ZN +

- 

PID 12 0 3
21 1 1 1

2
.

( )
.

( / )K T T
T

K T TZN ZN ZN ZN+
−

+
 0 6

21 1
2

.
( / )

T
K K T TP ZN ZN +

0 5

1

.
K K TP ZN

 a) Experiment with process reaction curve; 

Controller KP T/TI TD/T 
P 0.5 KU - - 
PI K T

TU
U

0 45 0 27. .−
F
HG

I
KJ

0 54. K T
K T

U

P U

- 

PID 0 6 1. K T
TU

U

−
F
HG
I
KJ  12. K T

K T
U

P U

 3
40

K T
K T

U

P U

                                     b) Experiment with process on the stability limit;   

 Tab. 2. Relations for controller tuning developed by Takahashi. 
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3.2. PID tuning based on integral criteria 

  

• Methods based on integral criteria for tuning PID controller involve searching 
for the minimum of the cost function I in the general form: 

 I t f e t dtn= z
∞

( )
0

, (28) 

where e(t) is the error signal. 

• Optimum controller parameters and the minimum of the penalty function I is 
found when its partial derivatives, in respect to controller parameters, equal 
zero. Equations for the calculations of the PID controller parameters are: 

 
∂

∂
=

I
KP

0, 
∂
∂

=
I
TI

0 , 
∂

∂
=

I
TD

0. (29) 
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• Generally, the set of equations (29) can not be solved analytically but 
numerically. Usually the choice of a particular function f and exponent n leads 
to formation of the following criteria (28): 

o Integral Error (IE):   f[e(t)]=e(t), n=0; 

o Integral Absolute Error (IAE):   f[e(t)]=|e(t)|, n=0; 

o Integral Time multiplied Absolute Error (ITAE):  f[e(t)]=|e(t)|, n=1; 

o Integral Squared Error (ISE):   f[e(t)]=e(t)2, n=0; 

o Integral Squared Time Error (ITSE): f[e(t)]=e(t)2, n=1; 

o Integral Time square multiplied Squared Error (IT2SE): f[e(t)]=e(t)2, n=2. 

  

• It is important to note that the error signal e(t), used for optimization, can be a 
result of set-point change or of load disturbance. It is, therefore, possible to 
obtain two sets of parameters: one optimized for set-point change and the other 
for load disturbance. 
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3.3. Cohen-Coon tuning rules 
 

• The Cohen-Coon tuning method is based on the FODT model (2) with main 
design specification for quarter amplitude decay (QAD) ratio in response to 
load disturbance.  

• The design objectives (Åstrom and Hägglund, 1995) were to maximize the 
gain and minimize the steady-state error and QAD for P and PD controllers.  

• The parameters of the PI controller were obtained through minimization of the 
IE criteria and demand for QAD response.  

• The parameters for PID controller were calculated with same objectives as for 
the PI controller. The positioning of the additional closed-loop pole was on the 
negative real axis. It is placed at the same distance from the origin as the two 
complex poles of the closed-loop system. 
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• Relations for controller parameters in Table 3. are given in terms of 
parameters: 

 α =
K T

T
t1 1

1
, (30) 

 τ =
+

T
T T

t

t

1

1 1
, (31) 

which are calculated from the parameters of the FODT model (2). 

 

Controller KP TI TD 

P 1 1 0 35
1α

τ
τ

+
−

F
H

I
K

.  - - 

PI 0 9 1 0 92
1

. .
α

τ
τ

+
−

F
H

I
K

33 3
1 12 1
.

.
−

−
τ
τ

Tt  - 

PD 1 24 1 0 13
1

. .
α

τ
τ

+
−

F
H

I
K - 0 27 0 36

1 0 87 1
. .

.
−

−
τ

τ
Tt

PID 135 1 0 18
1

. .
α

τ
τ

+
−

F
H

I
K

2 5 2
1 0 39 1

.
.
−

−
τ
τ

Tt
0 37 0 37

1 0 81 1
. .

.
−

−
τ

τ
Tt

                                  Tab. 3. Cohen-Coon controller tuning rules. 
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• Åstrom and Hägglund (1995) observed that the Cohen-Coon tuning method 
suffers from a too small decay ratio, which results in low damping and high 
sensitivity of the closed-loop system. 
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3.4. PID tuning based on gain and phase margin specifications 

 
• PID tuning methods based on gain and phase margin specifications (GPM 

methods) involve solving definition equations for gain and phase margins, 
given by (20)-(22). Generally, these equations are non-linear and complicated 
for solving.  

• Therefore, usual design methods based on these specifications are solved 
numerically or graphically, using Bode diagrams.  

• Let’s analyze the control system consisting of a PI controller and a FODT 
process with transfer function (2). When transfer functions of these dynamic 
elements are put into (20)-(22), arctan function appears in relations 
determining gain and phase crossover frequency. 
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• It follows from (20) and (21):  

 ½ π + arctan ωπ TI - arctan ωπ T1 − ωπ Tt1 = 0,  (32) 

 A K K T T
Tr P I

I
1

2
1
2

2 2
1
1

=
+
+

ω ω
ωπ

π

π
, (33) 

• It follows from (23) and (21):  

 K K T T
TP c I

c

c I
1

2
1
2

2 2
1
1

=
+
+

ω ω
ω , (34) 

 γ = ½ π + arctan ωc TI - arctan ωc T1 − ωc Tt1. (35) 

• In order to simplify the procedure of solving these non-linear equations, the 
following approximation was introduced: 

 arctan( )
;

;
x

x

≈
≤

>

R
S
||

T
||

π

π π
4

2

           x 1

-
4x

     x 1
.  (36) 
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• The approximation and solving equations (32)-(35) for PI controller 
parameters gives: 

 K T
A KP

r

=
ω π 1

1
, (37) 

 T T
TI

t= − +
F
HG

I
KJ

−

2 4 12
1

1

1

ω ω
ππ
π , (38) 

where ωπ is calculated through: 

 ω γ π
π =

+ −
−

A A A
A T

r r r

r t

1
2
2

1

1
1
( )

( ) . (39) 
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3.5. Approximate pole placement method: Dominant pole design 
• Dominant-Pole Design (DPD) methods find controller parameters which place 

the dominant poles of the closed-loop system in specified locations. In other 
words, those methods can be viewed as a translation of the problem of finding 
controller parameters into the problem of placing dominant poles in desired 
locationsat the complex plain (s or z).  

• The number of dominant poles to be placed depends on the number of free 
parameters, that is, on the number of controller parameters.  

• A PI controller allows placement of two dominant poles, and a PID controller 
of three dominant poles. For these controllers, locations of the closed-loop 
dominant poles are parameterized with (Åstrom and Hägglund, 1995): 

o PI controller: 

 p jn1 2
21, ( )= − ± −ω ζ ζ , 0<ζ <1; (40) 

o An additional pole location for PID controller: 
 p k n3 0= − ω . (41) 
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• Pole locations (40) and (41) in s-plane are depicted in Figure 9., where angle α 
is determined through α = acos (ζ). 

 

 

p1

p2

p3

s - plane

Im

Re
α

ωn

−k0ωn

 
 

Fig. 9. Locations of dominant poles of closed-loop control system using PI and PID 
controllers. 
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• Calculation of the closed-loop poles involves solving characteristic equation of 
the control system: 

 1 + GR(s)GP(s) = 0. (42) 

• If the required pole location is p1, and the controller GR(s) is a PI controller, the 
characteristic equation of the control system is:  

 1 1 01

1
1+

+F
HG

I
KJ =K T p

T p
G pP

I

I
P ( ) , (43) 

and it should be solved for the controller parameters KP and TI.  
• To simplify calculation of the characteristic equation transfer function GP(s), 

modeling the process, is parameterized with: 

 G s G e a eP s e P n
j

n
j

n
j

n( ) ( ) ( , )( )
( ) ( , )

=
−

− = =
ω

π α φ ω α
π α ω ω α  (44) 

• Parameter functions a(ωn,α) and φ(ωn,α) can described as ‘frequency 
characteristics’ of the process on the ray with angle α in s-plane, where a can 
be considered as ‘gain characteristic’ and φ can be considered as ‘phase 
characteristic’.  



 

 

49 

49 

• By putting parameterizations (40) and (44) in the characteristic equation (43), 
and solving it, following relations for PI controller parameters are obtained: 

 K
aP

n

n

= −
+sin ( , )

( , )sin( )
φ ω α α
ω α α
b g

, (45) 

 TI
n

n n

=
+sin ( , )

sin( ( , ))
φ ω α α

ω φ ω α
b g

. (46) 

• Dominant pole locations of the control system are set to p1 and p2 with suitable 
choice of ωn and ζ, and through calculation of the PI controller parameters 
according to (45) and (46). Similar relations can be derived for parameters of 
the PID controller. 
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3.6. Magnitude optimum and symmetric optimum tuning methods 

• Magnitude optimum (MO) and symmetric optimum (SO) are two loop-shaping 
tuning methods extensively employed by the German company Siemens. The 
first step in the application of these methods is to determine appropriate 
transfer function which models the process. Once the transfer function is 
determined, the controller is able to shape the open-loop transfer function in a 
desired. 

• MO tuning method was devised with the objective to obtain a control system 
with a frequency characteristic as close to unity and as flat as possible for the 
maximum bandwidth. Its mathematical expression states the requirements 
posed on the closed-loop transfer function GC(s): 

 GC(0)=1, (47) 

 
ω

ω
ω=

=
0

0lim
( )d G j

d

n
C

n
b g

, (48) 

for as many n as possible.  
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• Let it be desired open-loop transfer function is: 

 G s
s sO

n

n
1

2

2
( )

( )
=

+
ω

ςω , (49) 

where ζ  is the damping of the closed-loop system and ωn determines the 
closed-loop dynamics, that is, the speed of response.  

• For example, the PI controller is employed when it is possible to approximate 
the model of the process with the transfer function: 

 G s K
T s T sP( )

( )( )
=

+ +1 11 2
, (50) 

with T2<T1,.  
• By analyzing (47)-(50), and by setting ζ=0.707, PI controller parameters are 

calculated (Åstrom and Hägglund, 1995) 

 K T
K TP

I=
2 2  , (51) 

 TI =T1 , (52) 
with ωn=0.707/T2.  
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• The dominant pole is cancelled by the PI controller zero, and the closed-loop 
dynamics are determined the smaller time constant T2 of the process. 

• MO design method optimizes the closed-loop transfer function GC(s) between 
the reference and the output signal. It often cancels the process poles by the 
controller zeros, which can lead to poor performance of the control system in 
response to load disturbance. 

• The objective of the SO method, which was originally proposed by Kessler 
(1958), is to obtain an open-loop transfer function of the below formula: 

 G s a
s

s
a

s aO
c

c

c
2

2

2( )
( )

( )
=

+

+
ω

ω

ω , (53) 

where ωc is the gain crossover frequency and a is related to the phase margin 
of the control system through: 

 γ =
−
+
F
HG
I
KJ2 1

1
 atan a

a , (54) 

or conversely through: 

 a =
+1 sin
cos

γ
γ . (55) 
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• The method maximizes the phase margin of the control system and leads to 
symmetrical phase and amplitude characteristics, as can be observed in Figure 
10.  

• The second multiplicand in (53) has the transfer function of a phase-lead 
network, which provides required phase uplifting at the frequency ωc.  

• Figure 10. shows the amplitude and gain characteristics of the control system 
with the open-loop transfer function equal to (53). In the example, the 
parameter a was set to 4. 
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Fig. 10. Gain and phase characteristics of a control system tuned according to symmetrical 

optimum. 

 

  



 

 

55 

55 

• For example, if the process can be modeled with the transfer function G2 (3): 

 G s K
s T s2

2

21
( )

( )
=

+ , (56) 

it is suitable for the application of the SO tuning method.  

• The procedure leads to a PI controller with the following settings (Perić, 
1979): 

 K
a K TP =

1

2 2  , (57) 

 TI=a2T2, (58)  

and ω c a T
=

1

2  .  

• The common choice for the parameter a is 2, which gives the phase margin of 
the control system γ  ≈370. 
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• The SO method is designed to give a good response to load disturbance, but 
the response of the control system to set-point change has large overshoot. The 
overshoot is commonly reduced through the usage of a two-degree-of-freedom 
controller or with a prefilter. 

• The MO and SO tuning methods are widely used in the cascade control 
systems, especially to control motor drives (Perić, 1979,1989; Deur, 1999).  
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3.7. PID tuning in the framework of Internal Model Control 
• Internal Model Control (IMC), thoroughly described by Morari and Zafiriou 

(1989), is a general design procedure for obtaining controllers that ‘optimally’ 
meet requirements for stability, performance, and robustness of the control 
system.  

• The concept of IMC is based on the simulation of the process model GM(s) 
within the control structure.  

• Figure 11. shows the arrangement of IMC.  

• If the model of the process GM(s) perfectly matches the process GP(s), and load 
disturbance is not present, the output of the model cancels the output of the 
process annulling thus the feedback signal.  

• In such case, the process is controlled in an open loop. The feedback signal and 
hence feedback control, exist only if there is the model mismatch or load 
disturbance Z(s). 
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C(s) GP(s)

GM(s)

 
 

Fig. 11. Structure of Internal Model Control. 

 

• IMC design is made through following steps. The first in IMC design is to 
factor the transfer function modeling the process: 

 GM(s) = GM
+(s) GM

-(s), (59) 

where GM
-(s) contains only the left half plane poles and zeros, and GM

+(s) 
contains all time delays and the right half plane zeros.  
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• After that, the controller C(s) is defined with: 

 C(s)= (GM
-(s))-1GF(s), (60) 

where GF(s) is a filter which guarantees that the controller C(s) is realizable.  
• GF(s) also obtains the desired robustness and defines the closed-loop dynamics. 

The usual form of the filter is: 

 G s
T sF

F
n( ) =

+
1

1b g , (61) 

• The IMC design procedure can be used to design conventional feedback 
controllers.  

• Figure 11. shows the relation between a conventional feedback controller GR(s) 
and IMC controller C(s), which may be expressed with the below formula: 

 G s C s
C s G sR

M

( ) ( )
( ) ( )

=
−1 . (62) 

or inversely: 

 C s G s
G s G s

R

R M

( ) ( )
( ) ( )

=
+1 , (63) 
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• For the particular choice of model GM(s) and filter GF(s), IMC design 
procedure leads to PID controller (Morari and Zafiriou, 1989).  

• Performance and robustness trade-off of the obtained control system is handled 
through the value of the adjustable parameter TF, which determines the 
dominant time constant of the closed-loop system.  

• For example, a low value of the parameter TF produces fast response of the 
control system, but also results in low robustness margin. 

• The FODT model (2), can be used within the frame of IMC, but the part of the 
transfer function modeling dead time e-sTt has to be replaced with Pade 
approximations.  

• Furthermore, the exponent n in the denominator of the filter transfer function 
(61) is set to 1.  
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• Pade approximation of the zero order is: 
 e-sTt ≈ 1, (64) 

and leads to an IMC PI controller with the following parameters: 

 K T
K TP

F

= 1

1
, (65) 

 TI=T1, (66) 
and the recommended value for the filter time constant TF  > 1.7 Tt1. 

• The first order Pade approximation: 

 e sT
sT

sT t

t

t− ≈
−
+

1
1 2
1 2

1

1
, (67) 

in the FODT model and IMC design lead to a PID controller with parameters: 

 K T T
K T TP

t

F t

=
+

+
2
2

1 1

1 1b g , (68) 

 T T T
I

t= +1
1

2 , (69) 

 T TT
T TD

t

t

=
+

1 1

1 12 , (70) 

and the recommended value for the filter time constant TF  > 0.8 Tt1. 
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• It can be concluded that the main advantages of IMC design are: 

o Model uncertainty is explicitly considered; 

o Trade-off between performance and robustness of the control system is 
clearly defined. 

• The principal drawback of the method is that the process poles are cancelled 
with controller zeros according to (60), which results in sluggish response to 
load disturbance. 

• IMC tuning rules are expressed in terms of process model parameters and can 
be applied after the identification of the process model. Such models can be 
obtained as a part of an autotuning procedure. 
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4. Usage of PI controller in dead-time compensating controllers 
• One area of process control in which PID controllers fail to produce 

satisfactory results is the control of processes with large time delays.  

• Time delay is considered large when its value exceeds the dominant time 
constant of the process.  

• This type of dynamic behavior, termed time delay or dead time, is present in 
processes involving transport of materials such as rolling mills in metal 
industry and is a common result of composition analysis in chemical industry. 

• The assertion that PID control is inadequate for the control of processes with 
large dead time is based on two arguments: 

o the derivative action of the PID controller, needed for prediction, amplifies 
noise; 

o the open-loop gain has to be small rendering the performance of the 
control system poor. 
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 Fig. 12. Structure of the Smith predictor. 

 

• Another approach to control of processes with large time delays is to 
incorporate the model of the system as in Internal Model Control 

• The Smith predictor, shown in Figure 12, applies that approach.  
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• The model of the process is divided in two parts: one for modeling the 
dynamic behavior GM(s) of the process and the other for modeling time delay 
e sTtm− .  

• The transfer function of the control system with the Smith predictor is: 

 X
R P

sT

R P R P
sT

R M
sTG s Y s

R s
G s G s e

G s G s G s G s e G s G s e

tp

tp tm
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
= =

+ + −

−

− −1 . (71) 

• The denominator of the transfer function (71) which is the characteristic 
equation of the closed-loop control system, plainly shows that when the 
modeling is exact (GM(s)=GP(s)) the two last terms are cancelled.  

• In such case, the closed-loop transfer function becomes: 

 X
R P

R P

sTG s Y s
R s

G s G s
G s G s e tp( ) ( )

( )
( ) ( )

( ) ( )
= =

+
−

1 , (72) 

• In that case the controller GR(s) can be designed as if the process did not 
contain dead time.  
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• In other words, the controller GR(s) can be designed just for the part of the 
process modeled by the transfer function GM(s).  

• The cancellation of dead-time influence on the dynamic behavior of the control 
system is characteristic of dead-time compensating controllers. 

• The main drawback of the Smith predictor is that the performance and the 
stability of the control system are very sensitive to inaccurate modeling of the 
process, especially to the inaccurate modeling of dead time.  

• One important advantage of PID control over other control strategies, 
including the Smith predictor, is that operators are familiar with the tuning 
procedures for PID controllers.  

• These involve finding of only three parameters.  

• In comparison, the tuning of the Smith predictor involves identification of a 
suitable process model, and then tuning of the controller.  
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• The Smith predictor, which is based on the FODT model and on the PI 
controller, has five parameters and is very complicated to tune and operate. 

•  In order to simplify the tuning procedure of the Smith predictor, it has been 
proposed a restriction of the choice of the PI controller and FODT model 
parameters.  

• This type of the Smith predictor is called the predictive PI (PPI) controller.  

• Figure 13. shows the structure of the PPI controller. 
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                   Fig. 13. Structure of the FPPI controller. 
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• In the PPI controller, the parameters of the PI controller are related to the 
FODT model parameters as follows: 

 K
KR

M

=
κ

, (73) 

 T TI M=
1
τ , (74) 

where κ and τ are calculated from the desired performance of the closed-loop 
control system.  

• Based on these parameters, the characteristic equation of the PPI is: 

 s
T

s
TM M

2
2

1 0+
+

+ =
κ κτ

. (75) 

• The PPI controller solves the problem of operational complexity of the Smith 
predictor since it decreases the number of controller parameters, but it does not 
solve the problem of high sensitivity of the Smith predictor due to the 
inaccurate modeling of the process.  
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• In order to increase the robustness of the PPI controller a filter in the PPI 
structure is introduced. Figure 13. shows such filtered PPI (FPPI) controller.  

• In order to preserve the simple structure of the PPI filter, F(s) is chosen to be 
the first-order lag with static gain equal to one: 

 
1( )

1
SF

F s
sT

=
+ . (76) 

• It is recommended to choose: 

 2
tm

F S

TT = . (77) 

• The described PID controllers are basic components of many control systems 
operating in industry.  

• It is worthwhile to automate some of the described tuning procedures 
(autotuning PID controller). 


